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ADDENDUM

Proof of a General Relationship

Used in the Stability Test of Linear Discrete Systems

In the stability criterion developed for the linear discrete systems,

the following general relationship is used to reduce the stability constraints.

Aýk - Bk= (Ak+ + Bk+l)(Ak -Bkl) + (Ak+l.Bk+l)(Akl+Bk_1)]

k= Z, 3,. .. ,n-l (I)
=A Ak~+ -B Bk_~

Ak-I k+l Bk-l Bk+I

where Ak + Bk are given in the Appendix.

The proof of Eq. (1) is based on the combined use of the following

three propositions. The reader should be familiar with Refs. I and 2 in

order to follow the notations and the details of the proofs.

Proposition 1:

.n' ,V k' ) Zk - I < n, Ak + Bk are prime (not factorable) polynomials

in the ring of polynomials of n variables a 0, a1 , a,..., an.

Proof:

We readily notice that A, + B1 is prime. Assume Akl+ Bk.l is

prime, we show Ak+ Bk is prime too. The proof for Ak - Bk is analogous

to Ak + Bk.

Suppose, on the contrary, that Ak+Bk is not prime. Let P and Q

be polynomials into which Ak+ Bk factors,

Ak + Bk = PQ (2)

Expanding the determinant (see Appendix) for Ak+ Bk in cofactors

of the last row we get:

PQ= Ak+ Bk= aOG+ an G (3)

where G and G* are the cofactors of a0 and an.
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By inspection, it can be seen that except for a relabeling of some

indices, G withan = 0 and G with a 0 = 0 are of exactly the same form as
Ak.1 + B k. (the restriction Zk - 2 < n is needed here and for later dis-

cussions we require 2k-I < n). Therefore GI and G*l are

prime. an=0a 0

I we put a = 0 in (3) and divide by P,

a a0GI 
a = 0

'al =0 n (4)

n la =0
n

Also, a G*I
S~n :.a0 =O0

aaPl 0= 0

From (4) and (5) and the fact that Q is a polynomial and G 1  0'a -=0' =

are prime, it follows that P must be of the form:
P = (c1an + c2a0 + c3 + a0anP') (6)

where PI is a polynomial and the c's are constants.

Similarly for Q we can write

Q = (c 4 an + c5 a 0 + c 6 + a 0a a')n (7)

where Q' is a polynomial and the c's are constants.

Because Ak+ Bk is identically equal to PQ, all of the constants in

(6) and (7) are necessarily zero. This implies PQ a 0 if a 0 or an = 0 which

is not true. Thus Ak + Bk does not factor and hence a prime. By similar

reasoning Ak - Bk can be shown to be prime too.

Proposition 2:

6i+a (i) divides 6 Tai(i+2 ) 2) 1,2,3,..., n-1 (8)

Proof: To prove Eq. (8), first we observe that the rules of calculating

61+2 (see Table 1 of Ref. 2) from the previous two rows in the table and(i+2)
forming the sums 6i+2 ± an.(i+2 ) are identical to those for calculating
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6 and 6 + a( 2 ) from the first two rows. Hence, the relationship, as2 2- n-2(2far as divisibility is concerned, between a + a and 6 Tan2 is exactlyand u- i+2) - "-
the same as that between 6 +_ ) n1 iand 6 i n(i+2) Therefore, to
prove (8) it is sufficient to show that avdes6 a 2  This can

be shown as follows:
From Table (1) of Ref. (2),

62 ( 2n2 2
62=(a a) 2 (aa -aan) (9)2 0 n 0On-l 'I n

and

a(2= (a a 2a)(a - aza) - (a 0a - a na)(a 0 a - ala) (10)

In forming 62+ a(2) we obtain-- n2 , weoti

62 " a(2) = (ao+a)•l (Il)

and
6 a (2) (12)

2 n-2 (a 0 an) 4 (2

where +, and +2 are polynomials of the variables a k's.

The'refore a 0 + a divides 6+ (2) k
-- an2 and this proves proposition 2.

Proposition 3:

•n' ''k' 32k-I < n,

S(k)
6 + a'

-n-k -A + (13k-2 k-3 k-4 ( kI61 62 63 6 k-2 (Ak BkI)

Proof: To prove the above relationship we introduce the following equation
which can be obtained from Table 1 of Ref. 2:

6k+l= (6k+a(k)+an-k.(6k - akn-k k= 2,3, •.,n-l (14)

Furthermore, Marden 3 has proved the following identityin terms of the
stability constants Ak's and Bk's.1
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6k+1 (15)+
"IA+I lk+l )(Ak+lBk+l)= 6k-l 6k-2 6k-3 6 2661 62 3 k-.2 k_1

We assume that (13) is valid for all k < m- 1; by induction we will

show that (13) holds for k = m.

Using (15) we get for k =m

6m~

(Am+i B )(A + B )= m+l (6
m+l+m+l m+l m+l r-1 m-Z 3m-3 (16)

61 62 63 6 M-r6n-I
Using (14) and (15) for 6 ml, to obtain

(( + a(m)a)(6 a(m)
(A + )A -Bm n-m- m n-m

Am+l+m+l )(AM+ IBM+l= m-6M -3 6z m-3 m-4
1 2 3 2m.Z)(Amn1 1 62 m-n-3)

(17)

The above equation can also be written as: { 6 + a(m)}
(Am+ B +)(A B inrn n-nm

m M+ m+ m+1 m-Z m-3 -B

F
I

m (n)

61 2 6 -2 A -1+B d

F 2  (18)

+From this equation we can readily establish

62= A2

63 = 6162 2 A since 61 A 1 )

-= 3 264= 1 2 53= A1 A2A 1A2 1 A2
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Ik+l ( -B)+61C+= (Ai l Bklk+" Bk+l)= " k-1 k-2 6k-3 62
6 1 62 6 3 6k26 k(5

We assume that (13) is valid for all k < m- 1; by induction we will

show that (13) holds for k = m.

Using (15) we get for k =m

(A +1 +Bm )(Ai 6B+) rni m+1
6 62-Z m-3 ... 62 (16)1 6  3 m-2 n-mI

Using (14) and (15) for 6mI, to obtain

(6 + a(m) )(6 - a(m)
Bm n-mr m n-m

(Am+ +Bm)M+ IBm+l)= -m-2 m-3 z2 m-3 m-4
(6B1A6 2 6  3 6. m.-2 )(Am1 61 62 .. .6m3)

(17)

The above equation can also be written as:

( 6 + a(m)
(A+I+ Bm+l)(Am+i" Bm+l) - m +n- mM~l M~ M~l m i)= 6M-25 m-3 6 (61 M- ' "m 2 (ArnBm-1) )

F 1

{ r n 2 r - a ( Am B i )5m n-m

•m2"m-3 n"61 6 2 6 " M-2 (A m-I +B Bm+I

F 2"
F2  (18)

+From this equation we can readily establish

62 = a2

63 = 66= = 1 A 2  since 61= A1 )

2 2 32

64= 61 62 63= AI A 2 A1 2  A 1 A 2
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For simplicity we define F 1 and F 2 as indicated in the brackets

of (18).

Next, we show that FI and F 2 are polynomials:

(a) Am.,itBmi and [ m..., 6 . are coprime (i. e., have no
) A2 M-2

common factors).

By proposition 1, Am_, ± Bm_l is prime. Using (15) fork = r-l

rm-2 m-36-1 6 2 ""M-2 1

can be written as a product of prime factors of the form Ak + Bk, k<m-l.

Hence
[Am__+ Bim and [ 6  2 m-3- 62 ... 6mz]

are coprime.

(b) By assumption, (13) is valid for k < m-I and in particular, k= m-2;

therefore, by noting (13) we readily ascertain that Am_1 + Bm_1 is a

divisor of 6 ± a(m-2)

m-2- n-(m-Z)
Now if we apply proposition 2, it is clear that Am-, + Bm-l divides

6 Ta(m) from (18).
rn - n-rn

(c) Since Am+I is a polynomial, 6 - (an-m)2 is divisible by

,m-Zm-3 2

Furthermore,

6m
Am- 2m-2m-3

61 6 2 " M-2

is a polynomial, it follows that a(M) and therefore 6 + a(m) aren-rn m -n -

divisible 
by

m-2 m-3
61 62 ".."6 m-2

Items (b) and (c) in combination with (a) account for all the terms of the

denominators dividing into the numerators in F1 and F . Hence, F1 and

F2 are polynomials.
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From Proposition 1, Am+I ± Bi+l are both prime. Since F 1 F 2

in (18) is divisible by Am+l±+Bm+I, it follows thatA m+l+Bm+ divides FI orF2

andAM+i - Bim+i also divides F or F2. The degrees of Am +,. Bi+l and

F 1 and F 2 are equal, so Am+I + Bm+I must be constant multiples of F 1 and

F 2 . Therefore, only these two possibilities may exist:

I. Am++ B +l i (19)

Arn+l B Bi+I D I F 2

II. (20)A m+1 + BiM+ I D D2F 2

where CV, D1 , C 2 , and D2 are constants.

From (18) we note

26F( B + (A +Bm (21)FIA -IB-)+F(m-I+ Bmi-) = m-Z m-3 (•1)

1 M1 M1 2 M-1 M-1 6 M 6 m-36
1 2 m-2

Using (15), we obtain

Am= FI(Am - B.) + F 2 (Am_ + Bin)=" Z(Am-Bm)(Am+ Bm) (22)

To show that for F 1 and F 2 only possibility (I) exists, we substitute

in the above the second form, i. e. , Eq. (20)

Z(A -B )(A +B )& (A+ B )(ABB
Mm rn in 2 m+l(M-1l M-1)

+ (Am+ + Bm+l)(Am_l+Bm_l) (23)

To show the above does not hold for all mrs, (1) we equate the coefficients

of a0 m on both sides to obtain 2 = I/C 2 + I/D 2 ; (2) we also equate the co-
o ~Zm 2

efficients of a on both sides. We notice that for m-even , the aboven

(for finite C2 and D 2 ) is not satisfied while possibility (I) is satisfied.

Furthermore, by equating the coefficients of a-2 a 2 '-n- on both sides of0 n-I
the above equation in addition to (I) we find that for m-odd the above is



also not satisfied while using (19), it is satisfied. Therefore (22)

is satisfied only by using (19) for FI and F . Thus we finally

obtain

A -B2  (A1 +B )(A )+-(A -B B )(A l+Bml
-( m=D • Am+l m+l r-1

(24)

We can show that C 1=D=1 for possibility (I) by equating the coefficients

of a on both sides of Eq. (24).

1 1=--+ ( an m-1" D--1-n m-1)

2m
or l/CI=1/D 1 and from equating the coefficients of a on both sides of

+
Eq. (24), we get, 2=1/C 1 +I/D 1 . Therefore, CI=D 1 =I. This completes

the proof of proposttion 3.

If we substitute for m the variable k in (24),

221Ak=AkB B (Ak+l+Bk+l )(Akl -B Bk-l)+(Ak+l-Bk+l)(Ak-l+Bk-1il

(25)

A k-l Ak+l Bk- Bk+l

which is (1) except for the restriction on k to be such that 2k-I < n.

This restriction, which was only used in proving proposition 1 in

fact, is not necessary. To see that (25) holds for all values of k < n,

consider for the moment n to be fixed, say n=n 0. We have already

shown (25) to be valid for all k such that 2k-1 < no, and it remains

to show its validity for all other 2k-1 > no, k < nO" For these values

of k, consider (25) for n=2n . Since k <no, 2k-1 < n=2n0 so (25)
00 0

is valid for these values of k and for n=2n 0' Put a Zn 0=a n, a 2no

=a n1 a n+,=ai* Then the resulting determinants for kOn 0 are

identical to those for n=n 0 . Hence, (25) is valid for all k < not

which proves the validity (1).

+By noting Eqs. (18) and (19), one can establish that C1 D1 =1. Using

C 1D=1 in combination with 2=1/C 1 +I/D 1 , we can readily establish

that CI=DI=I.


